Радиация для человека

Допустим, какой-нибудь сумасшедший мировой лидер решит нажать на большую красную кнопку. Или террористы перехватят контроль над ядерным реактором. Вы пережили первый взрыв. Мир отравлен радиацией. Каково это? Когда происходят ядерные реакции, они делят частицы с такой энергией, что электроны отрываются от атомов. Измененные связи создают пары ионов, которые чрезвычайно реактивны химически. Это — ионизирующее излучение, и с этого начинаются все проблемы.

Как убивает радиация?

Есть много видов ионизирующего излучения. Космическое, альфа, бета, гамма, рентгеновское, нейтронное и другие. Важно другое: как сильно организмы подвергается воздействию этой радиации, то есть какую получает дозу облучения.

Поглощенную дозу измеряют в греях (Гр, Gy) или в зивертах (Зв), которые принимают меру Гр и умножают ее на тип излучения для расчета эффективной дозы в живой ткани. Среднее облучение за пару секунд абдоминального рентгеновского снимка составляет 0,0014 Гр – это легкая доза, которая применяется локально, поэтому не так уж она и плоха. Опасность начинается, если воздействие облучение приходится на все тело – например, как в контрольной комнате Чернобыля сразу после взрыва. Там бы вы впитывали 300 Зв в час. Но вряд ли продержались бы час. Доза стала бы смертельной уже через 1-2 минуты.

Как умирают от радиации?

Большие дозы ионизирующей радиации за короткое время приводят к острому радиационному синдрому, то есть к отравлению радиацией. Серьезность симптомов зависит от уровня облучения. Доза радиации в 0,35 Гр будет похожа на грипп — насморк и головокружение, головные боли, усталость, лихорадка. Если тело подвергнется облучению в 1-4 Гр, клетки крови начнут умирать. Вы сможете восстановиться — лечение такого рода радиационного синдрома обычно включает переливание крови и антибиотики, но также может ослабиться иммунный ответ из-за падения числа лейкоцитов, кровь не будет сворачиваться и появится анемия. Также вы заметите странные солнечные ожоги при воздействии 2 Гр ионизирующего излучения. Технически это острый радиодерматит, и его проявления включают красные пятна, шелушение кожи и иногда опухлость.

Доза в 4-8 Гр может быть смертельной, но путь к смерти будет зависеть от уровня воздействия. При таком облучении пациенты страдают рвотой, диареей, головокружением и лихорадкой. Без лечения вы могли бы умереть всего через несколько недель после облучения.

Физик Луис Слотин, погибший от облучения во время своих исследований в 1946 году в Манхэттенском проекте, подвергся облучению в 10 Гр гамма- и рентгеновским излучением. И сегодня бы он не выжил, несмотря на современные процедуры, такие как трансплантация костного мозга. Пациенты, которые подвергаются воздействию радиации от 8 до 30 Гр, испытывают насморк и диарею в течение часа, а умирают в течение 2 дней – 2 недель после воздействия.

Дозы облучения свыше 30 Гр вызывают неврологические повреждения. В течение нескольких минут пациенты испытывают сильную рвоту и диарею, головокружение, головные боли и бессознательное состояние. Часто случаются приступы и тремор, а также атаксия — потеря контроля над функцией мышц. Смерть в течение 48 часов неизбежна.

Остается выжить

Если вам повезет уклониться от отравления радиации, вызванного ядерным взрывом или расплавлением реактора, это еще не значит, что вас ждет счастливый конец. Длительное воздействие ионизирующей радиации даже в дозах, которые слабы, чтобы ослабить и вас, может приводить к генетическим мутациям и раку. Это самый большой риск, с которым столкнулись выжившие при аварии на Фукусиме и в Чернобыле. По последним оценкам, еще тысячи умрут от рака, вызванного поражением радиацией от выпавших осадков.

Обычно клетки контролируются химической структурой молекул ДНК. Но когда радиация выделяет достаточно энергии, чтобы нарушить молекулярные связи, цепочки ДНК рушатся. Хотя большинство их нормально восстанавливаются, около четверти — нет, поэтому начинается длительный процесс, который приводит к увеличению скорости мутаций в будущих поколениях клеток. Вероятность рака увеличивается с эффективной дозой облучения, но сама тяжесть рака от дозы не зависит. Сам факт облучения имеет значение, а не низкий или высокий уровень излучения.

При долгосрочном воздействии облучения модели, прогнозирующие уровень риска, не дают однозначных ответов. Самая распространенная модель предполагает, что с точки зрения воздействия на большинство людей самым опасным источником излучения является низкоуровневое фоновое излучение. Поэтому, хоть острое радиационное отравление ужасно само по себе, переживать больше стоит из-за медленного, но постоянного облучения.

В Архангельске ситуация оставалась в норме

Девушка на берегу Белого моря в Северодвинске Фото: Сергей Бобылев/ТАСС

Москва. 13 августа. INTERFAX.RU — 8 августа, в день взрыва на полигоне под Нёноксой, в Северодвинске был зафиксирован скачок радиоактивного излучения до 1,78 мкЗв/ч, это произошло около 12:30 по Москве. Это следует из материалов Росгидромета. К 14:30 радиационный фон в городе нормализовался.

Ссылаясь на данные Северного управления по гидрометеорологии и мониторингу окружающей среды, ведомство сообщило, что системы автоматизированного контроля радиационной обстановки (АСКРО) в шести из восьми пунктов в Северодвинске зафиксировали превышение мощности дозы гамма-излучения в 4-16 раз по сравнению с фоновыми значениями.

Судя по представленной таблице, максимальные значения 8 августа в Северодвинске составляли от 0,11 до 1,78 мкЗв/ч (на пункте «ПНЗ 1») при среднем значении фона в городе 0,11 мкЗв/ч. По данным Центра природопользования Архангельской области, пункт «ПНЗ 1» находится по адресу проспект Труда, дом 48, там расположен детский сад №66 «Беломорочка».

В 12:30 по Москве в шести пунктах измерения радиационный фон снизился до диапазона от 0,21 до 0,44 мкЗв/ч, к 13:00 упал до 0,13 — 0,29 мкЗв/ч. К 14:30 ситуация нормализовалась и радиационный фон составлял от 0,13 до 0,16 мкЗв/ч. Таким образом, повышенное излучение регистрировалось в течение примерно двух часов.

В Архангельске весь день 8 августа радиационный фон оставался в норме.

8 августа о недолгом превышении уровня радиации сообщала администрация Северодвинска. С 11:50 до 12:20 мск радиационный фон повышался до 2 микрозивертов в час при установленной норме 0,6 микрозивертов в час, говорилось в пресс-релизе. К 14:00, по словам чиновников, показания датчиков не превышали 0,11 микрозивертов в час.

«Гринпис России» , ссылаясь на данные областного МЧС, сообщал о скачке радиационного фона в Северодвинске до 2 мкЗв/ч.

Ранее сообщалось, что Единая государственная автоматизированная система мониторинга радиационной обстановки (ЕГАСМРО) в четверг, 8 августа, не фиксировала роста радиационного фона в Архангельской области в целом и в Северодвинске в частности. Вместе с тем, в Северодвинске работает лишь один пост этой системы, следует из информации на портале ЕГАСМРО. Параллельно в городе работают посты АСКРО.

8 августа Минобороны сообщило, что в Архангельской области два человека погибли из-за взрыва на испытаниях жидкостного реактивного двигателя. Затем «Росатом» сообщил о гибели еще пяти сотрудников госкорпорации и уточнил, что взрыв произошел на морской платформе при испытании ракеты с радиоизотопным источником питания. После случившегося было запрещено на месяц судоходство на участке Двинского залива Белого моря, на котором проходили испытания.

Президент США Дональд Трамп в твиттере написал, что в Архангельской области взорвалась крылатая ракета «Буревестник», которую НАТО называет Skyfall.

Воздействие радиации на человека

Эффекты воздействия радиации на человека обычно делятся на две категории (рис. 10):
1) Соматические (телесные) — возникающие в организме человека, который подвергался облучению.
2) Генетические — связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.

Радиационные эффекты облучения человека

Соматические эффекты

Генетические эффекты

Лучевая болезнь

Генные мутации

Локальные лучевые поражения

Хромосомные аберрации

Лейкозы

Опухоли разных органов

Рис. 10. Радиационные эффекты облучения человека.

Различают пороговые (детерминированные) и стохастические эффекты. Первые возникают когда число клеток, погибших в результате облучения, потерявших способность воспроизводства или нормального функционирования, достигает критического значения, при котором заметно нарушаются функции пораженных органов. Зависимость тяжести нарушения от величины дозы облучения показана в таблице 30.

Таблица 30.

Воздействие различных доз облучения на человеческий организм

Доза, Гр Причина и результат воздействия
(0.7 — 2) 10-3 Доза от естественных источников в год
0.05 Предельно допустимая доза профессионального облучения в год
0.1 Уровень удвоения вероятности генных мутаций
0.25 Однократная доза оправданного риска в чрезвычайных обстоятельствах
1.0 Доза возникновения острой лучевой болезни
3- 5 Без лечения 50% облученных умирает в течение 1-2 месяцев вследствие нарушения деятельности клеток костного мозга
10 — 50 Смерть наступает через 1-2 недели вследствие поражений главным образом желудочно кишечного тракта
100 Смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы

Хроническое облучение слабее действует на живой организм по сравнению с однократным облучением в той же дозе, что связано с постоянно идущими процессами восстановления радиационных повреждений. Считается, что примерно 90% радиационных повреждений восстанавливается.
Стохастические (вероятностные) эффекты, такие как злокачественные новообразования, генетические нарушения, могут возникать при любых дозах облучения. С увеличением дозы повышается не тяжесть этих эффектов, а вероятность (риск) их появления. Для количественной оценки частоты возможных стохастических эффектов принята консервативная гипотеза о линейной беспороговой зависимости вероятности отдаленных последствий от дозы облучения с коэффициентом риска около 7 *10-2 /Зв. (Таблица 31).

Таблица 31.

Число случаев на 100 000 человек при индивидуальной дозе облучения 10 мЗв.
Категории
облучаемых
Смертельные
случаи рака
Несмертельные
случаи рака
Тяжелые
наследуемые
эффекты
Суммарный
эффект:
Работающий
персонал
4.0 0.8 0.8 5.6
Все население * 5.0 1.0 1.3 7.3

* Все население включает не только как правило здоровый работающий персонал, но и критические группы (дети, пожилые люди и т.д.)

Радионуклиды накапливаются в органах неравномерно. В процессе обмена веществ в организме человека они замещают атомы стабильных элементов в различных структурах клеток, биологически активных соединениях, что приводит к высоким локальным дозам. При распаде радионуклида образуются изотопы химических элементов, принадлежащие соседним группам периодической системы, что может привести к разрыву химических связей и перестройке молекул. Эффект радиационного воздействия может проявиться совсем не в том месте, которое подвергалось облучению. Превышение дозы радиации может привести к угнетению иммунной системы организма и сделать его восприимчивым к различным заболеваниям. При облучении повышается также вероятность появления злокачественных опухолей.
В таблице 32 приведены сведения о накоплении некоторых радиоактивных элементов в организме человека.
Организм при поступлении продуктов ядерного деления подвергается длительному, убывающему по интенсивности, облучению.
Наиболее интенсивно облучаются органы, через которые поступили радионуклиды в организм (органы дыхания и пищеварения), а также щитовидная железа и печень. Дозы, поглощенные в них, на 1-3 порядка выше, чем в других органах и тканях. По способности концентрировать всосавшиеся продукты деления основные органы можно расположить в следующий ряд:

щитовидная железа > печень > скелет > мышцы.

Так, в щитовидной железе накапливается до 30% всосавшихся продуктов деления, преимущественно радиоизотопов йода.
По концентрации радионуклидов на втором месте после щитовидной железы находится печень. Доза облучения, полученная этим органом, преимущественно обусловлена радионуклидами 99Мо, 132Te,131I, 132I, 140Bа, 140Lа.

Таблица 32.

Органы максимального накопления радионуклидов.

Элемент Наиболее чувствительный
орган или ткань.
Масса органа или ткани, кг Доля полной дозы *
Водород H Все тело 70 1.0
Углерод C Все тело 70 1.0
Натрий Все тело 70 1.0
Калий К Мышечная ткань 30 0.92
Стронций Sr Кость 7 0.7
Йод I Щитовидная железа 0.2 0.2
Цезий Сs Мышечная ткань 30 0.45
Барий Ва Кость 7 0.96
Радий Кость 7 0.99
Торий Тh Кость 7 0.82
Уран U Почки 0.3 0.065
Плутоний Рu Кость 7 0.75

* Относящаяся к данному органу доля полной дозы, полученной всем телом человека.

Среди техногенных радионуклидов особого внимания заслуживают изотопы йода. Они обладают высокой химической активностью, способны интенсивно включаться в биологический круговорот и мигрировать по биологическим цепям, одним из звеньев которых может быть человек (рис. 11).
Основным начальным звеном многих пищевых цепей является загрязнение поверхности почвы и растений. Продукты питания животного происхождения — один из основных источников попадания радионуклидов к человеку.
Исследования, охватившие примерно 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки, показывают, что рак — наиболее серьезное последствие облучения человека при малых дозах. Первыми среди раковых заболеваний, поражающих население, стоят лейкозы (рис. 12).

Рис.11. Пути воздействия радиоактивных отходов АЗС на человека.

Рис. 12. Относительная среднестатистическая вероятность заболевания раком после получения однократной дозы в 1 рад (0.01 Гр) при равномерном облучении всего тела.

Распространенными видами рака под действием радиации являются рак молочной железы и рак щитовидной железы. Обе эти разновидности рака излечимы и оценки ООН показывают, что в случае рака щитовидной железы летальный исход наблюдается у одного человека из тысячи, облученных при индивидуальной поглощенной дозе один Грей.
Данные по генетическим последствиям облучения весьма неопределенны. Ионизирующее излучение может порождать жизнеспособные клетки, которые будут передавать то или иное изменение из поколения в поколение. Однако анализ этот затруднен, так как примерно 10% всех новорожденных имеют те или иные генетические дефекты и трудно выделить случаи, обусловленные действием радиации. Экспертные оценки показывают, что хроническое облучение при дозе 1 Грей, полученной в течение 30 лет, приводит к появлению около 2000 случаев генетических заболеваний на каждый миллион новорожденных среди детей тех, кто подвергался облучению.
В последние десятилетия процессы взаимодействия ионизирующих излучений с тканями человеческого организма были детально исследованы. В результате выработаны нормы радиационной безопасности, отражающие действительную роль ионизирующих излучений с точки зрения их вреда для здоровья человека. При этом необходимо помнить, что норматив всегда является результатом компромиса между риском и выгодой.

Где и какие дозы мы можем получит? Примеры.

Однако в результате аварий, когда защитные барьеры оказываются разрушенными, из реакторов во внешнюю среду могут выбрасываться с потоками пара газообразные и возгоняющиеся радиоактивные элементы: радиоактивные благородные газы, радионуклиды йода и цезия.

На ранней фазе аварии (т.н. фаза «острого» облучения) происходит собственно выброс радиоактивных веществ в окружающую среду. Продолжительность этого периода может быть от нескольких минут до нескольких часов в случае разового выброса и до нескольких суток в случае продолжительного выброса.

Промежуточная фаза аварии — период, в течение которого нет дополнительного поступления радиоактивности из источника выброса в окружающую среду. Эта фаза начинается с нескольких первых часов с момента выброса и длится до нескольких суток, недель и больше. Для разовых выбросов протяженность промежуточной фазы прогнозируют, как правило, в пределах 7 — 10 суток.

Поздняя фаза (фаза восстановления) характеризуется периодом возврата к условиям нормальной жизнедеятельности населения и может длиться от нескольких недель до нескольких десятков лет в зависимости от мощности и радионуклидного состава выброса, характеристик и размеров загрязненного района, эффективности мер радиационной защиты. К наиболее тяжелым радиационным авариям на АЭС, сопровождаемым выбросом урана и продуктов его деления за пределы санитарно-защитной зоны и радиоактивным загрязнением окружающей среды, относятся т.н. запроектные аварии, обусловленные разгерметизацией первого контура реактора. Характерный пример такого типа аварий — авария реактора РБМК-1000 на Чернобыльской АЭС в апреле 1986 года.

Основной источник радиоактивных загрязнений окружающей среды и облучения людей при авариях ядерных реакторов — это выбрасываемые из реактора газоаэрозольные смеси. Радиоактивные аэрозоли после попадания на поверхность объектов закрепляются на ней. Процессы поверхностного и глубинного загрязнений, как правило, происходят одновременно.

В сухую погоду радиоактивные загрязнения являются в основном поверхностными. В то же время отдельные частицы будут проникать в выемки шероховатой поверхности, обуславливая глубинные загрязнения.

При загрязнении поверхности каплями, содержащими радиоактивные вещества, срабатывает другой механизм: первоначально будет происходить адгезия (прилипание) капель к твердой поверхности, которая в дальнейшем приведет к повышению концентрации радионуклидов на поверхности, ионному обмену и диффузии.

Помимо первичного радиоактивного загрязнения возможны последующие циклы загрязнения, т.н. <вторичное> загрязнение. При вторичном загрязнении происходит переход радиоактивных веществ с ранее загрязненного объекта или территории на чистый или загрязненный в меньшей степени объект. Так, радиоактивные загрязнения местности, сооружений и дорог могут переходить в воздушную среду или грунтовые воды, а затем осаждаться, вызывая радиоактивные загрязнения ранее «чистых» объектов, переноситься транспортом, людьми или животными.

При авариях на АЭС выделяют два основных периода: «йодовой опасности», продолжительностью до 2 месяцев, и «цезиевой опасности», который продолжается многие годы.

В «йодном периоде», кроме внешнего облучения (до 45 % дозы за первый год), основные проблемы связаны с молоком и листовыми овощами — главными «поставщиками» радионуклида йода внутрь организма. На первом этапе радиационное воздействие на людей складывается из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными облучениями от загрязненных радионуклидами объектов окружающей среды и вдыханием радионуклидов с загрязненным воздухом, на втором этапе — облучением от загрязненных радионуклидами объектов окружающей среды и введением их в организм человека с потребляемой пищей и водой, а в дальнейшем — в основном за счет употребления населением загрязненных продуктов питания.

Принято считать, что 85 % суммарной прогнозируемой дозы облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленного потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15 % падает на дозу внешнего облучения.

Материал подготовлен на основе информации открытых источников

Ионизирующая радиация всегда была составной частью среды, окружающей человека. Помимо естественных радиоактивных источников, присутствующих в земной коре, и космического излучения, непрерывное воздействие на людей оказывают также и источники ионизирующей радиации, созданные человеком.

Радиоактивное загрязнение окружающей среды происходит в результате бывших испытаний ядерного оружия, утилизации ядерных отходов, ядерных аварий, а также транспортировки, хранения, утечки и неправильного использования радиоактивных источников. Несмотря на риски, связанные с воздействием излучения, преимущества использования ядерной энергии в медицинe, промышленности и науке хорошо известны. Программа ВОЗ в области эффектов радиации на здоровье человека направлена на обеспечение того, чтобы преимущества использования радиации превосходили любой проистекающий из этого риск.

Программа ВОЗ в области ионизирующей радиации

Программа в области радиации и гигиены окружающей среды в рамках Кластера ВОЗ по вопросам общественного здравоохранения и окружающей среды (PHE) оценивает риск для здоровья и вопросы общественного здравоохранения, связанные с воздействием радиации в окружающей среде и на рабочих местах.

Цель этой Программы – изыскание способов для защиты здоровья человека от опасностей ионизирующей радиации путем повышения осведомленности людей о потенциальных рисках для здоровья, связанных с ионизирующей радиацией, и о важности его безопасного и рационального регулирования.

Мы надеемся, что, способствуя проведению научно-исследовательских программ по исследованию эффектов радиации на здоровье человека и предоставляя техническую консультацию, наше содействие в обеспечении медицинских работников необходимой информацией, в том числе по проведению медико-санитарных мер при чрезвычайных радиационных ситуациях, позволит национальным и местным органам общественного здравоохранения эффективно решать вопросы, связанные с профилактикой и снижением радиационного риска, присутствующего в окружающей среде.

Ссылки по теме

  • Общественное здравоохранение и окружающая среда
  • Укрепление безопасности в области здравоохранения
  • Гуманитарная деятельность в области здравоохранения
  • Веб-сайт Научного комитета ООН по действию атомной радиации (НКДАР ООН)
  • Веб-сайт Международного агентства атомной энергии (МАГАТЭ)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *