Внутриклеточные паразиты

Подавляющее большинство ныне живущих на Земле организмов состоит из клеток, и лишь вирусы не имеют клеточного строения.

По этому важнейшему признаку все живое в настоящее время делится учеными на две империи:
— доклеточные (вирусы и фаги),
— клеточные (все остальные организмы: бактерии и близкие к ним группы, грибы, зеленые растения, животные и человек).

Вирусы — мельчайшие организмы, их размеры колеблются от 12 до 500 нанометров. Мелкие вирусы равны крупным молекулам белка. Вирусы — резко выраженные паразиты клеток.

Важнейшими отличительными особенностями вирусов являются следующие:

1. Они содержат в своем составе только один из типов нуклеиновых кислот: либо рибонуклеиновую кислоту (РНК), либо дезоксирибонуклеиновую (ДНК), — а все клеточные организмы, в том числе и самые примитивные бактерии, содержат и ДНК, и РНК одновременно.

2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки-хозяина, ее ферменты и энергию.

3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют.

Наиболее примитивные вирусы состоят из молекулы РНК (либо ДНК), окруженной снаружи белковыми молекулами, создающими оболочку вируса. Некоторые вирусы имеют еще одну — внешнюю, или вторичную, оболочку; более сложные вирусы содержат ряд ферментов.

Нуклеиновая кислота (НК) является носительницей наследственных свойств вируса. Белки внутренней и внешней оболочек служат для ее защиты.

Так как вирусы не обладают собственным обменом веществ, вне клетки они существуют в виде «неживых» частиц. В этом случае можно сказать, что вирусы представляют собой инертные кристаллы. При попадании в клетку они вновь «оживают».

При размножении для создания компонентов своих частиц вирусы используют питательные вещества и энергетико-метаболические системы инфицированных ими клеток. После проникновения в клетку вирус распадается на составляющие его части — НК и белки оболочки («раздевается»). С этого момента биосинтетическими процессами клетки-хозяина начинает управлять генетическая информация, закодированная в нуклеиновой кислоте вируса.

В клетке-хозяине осуществляется раздельный синтез оболочки и НК вируса. В дальнейшем они объединяются и образуют новый вирион (полностью сформированный зрелый вирус). Эта особенность была подмечена учеными, которые даже проводили следующий эксперимент. Они разрушали вирус табачной мозаики на две его составные части — НК и белок. Затем смешивали их и… получали жизнеспособный исходный вирус со всеми его биологическими свойствами. Клетки же, как мы знаем, размножаются делением. Расчленение клетки на составляющие ее части (ядро, оболочку, цитоплазму, митохондрии, рибосомы) и последующее смешивание их не приведет к подобному эффекту — клетку восстановить не удастся.

Вирусы не размножаются на искусственных питательных средах — они чересчур разборчивы в пище. Обычный мясной бульон, который устраивает большинство бактерий, для вирусов не годится. Им нужны живые клетки, и не любые, а строго определенные.

Науке известны вирусы бактерий, растений, насекомых, животных и человека. Всего их более 1000. Связанные с размножением вируса процессы чаще всего, но не всегда, повреждают и уничтожают клетку-хозяина. Размножение вирусов, сопряженное с разрушением клеток, ведет к возникновению болезненных состояний в организме.

Вирусы вызывают многие заболевания человека: корь, свинку, грипп, полиомиелит, бешенство, оспу, желтую лихорадку, трахому, энцефалит, некоторые онкологические (опухолевые) болезни, СПИД. Нередко у людей начинают расти бородавки. Всем известно как после простуды зачастую «обметывают» губы и крылья носа. Это тоже всё вирусные заболевания.

Ученые установили, что в организме человека живет много вирусов, но проявляют они себя не всегда. Воздействиям болезнетворного вируса подвержен лишь ослабленный организм.

Пути заражения вирусами самые различные: через кожу при укусах насекомых и клещей; через слюну, слизь и другие выделения больного; через воздух; с пищей; половым путем и другие.

У животных вирусы вызывают ящур, чуму, бешенство; у насекомых — полиэдроз, грануломатоз; у растений — мозаику или иные изменения окраски листьев либо цветков, курчавость листьев и другие изменения формы, карликовость; наконец, у бактерий — их распад.

С самого начала вирусы считались только возбудителями болезней. Представление о вирусах как об исключительно болезнетворных агентах преобладает и сейчас в широких кругах «непосвященных». Однако это не совсем верно.

Известен целый ряд вирусов, которые не являются носителями болезней. Многие из них проникают в организм человека, но при этом не вызывают никаких клинически обнаруживаемых заболеваний. Они могут продолжительно и без всяких внешних проявлений существовать в клетках своего хозяина.

Представление о вирусах как о не останавливающихся ни перед чем «уничтожителях» сохранялось и при изучении особой группы вирусов, которые поражают бактерии. Речь идет о бактериофагах — «пожирателях бактерий» (их еще называют фагами), которые были открыты в 1917 году одновременно во Франции и Англии. Однако здесь появилась надежда на то, что способность фагов уничтожать бактерии может быть использована при лечении некоторых заболеваний, вызываемых этими бактериями.

Фаги действительно стали первой группой вирусов, «прирученных» человеком. Быстро и безжалостно расправлялись они со своими ближайшими соседями по микромиру. Палочки чумы, брюшного тифа, дизентерии, вибрионы холеры буквально «таяли» на глазах после встречи с этими вирусами. Их стали применять для предупреждения и лечения многих инфекционных заболеваний, но, к сожалению, за первыми успехами последовали неудачи. Это было связано с тем, что в организме человека фаги нападали на бактерии не так активно, как в пробирке. Кроме того, бактерии оказались «хитрее» своих врагов: они очень быстро приспосабливались к фагам и становились нечувствительными к их действию.

Иногда на помощь человеку приходят вирусы, поражающие животных и насекомых. Двадцать с лишним лет назад в Австралии остро встала проблема борьбы с дикими кроликами. Количество этих грызунов достигло угрожающих размеров. Они быстрее саранчи уничтожали посевы сельскохозяйственных культур и стали настоящим национальным бедствием. Обычные методы борьбы с ними оказались малоэффективными. И тогда ученые выпустили на борьбу с кроликами специальный вирус, способный уничтожить практически всех зараженных животных. Но как распространить это заболевание среди пугливых и осторожных кроликов? Помогли комары. Они сыграли роль «летающих игл», разнося вирус от кролика к кролику. При этом комары оставались совершенно здоровыми.

Можно привести и другие примеры успешного использования вирусов для уничтожения вредителей. Все знают, какой ущерб наносят гусеницы и жуки-пилильщики. Первые поедают листья полезных растений, вторые поражают деревья в садах и лесах. С ними сражаются так называемые вирусы полиэдроза и гранулоза, которые на небольших участках распыляют пульверизаторами, а для обработки больших площадей используют самолеты. Так поступали в США (в Калифорнии) при борьбе с гусеницами, которые поражают поля люцерны, и в Канаде при уничтожении соснового пилильщика. Перспективно также применение вирусов для борьбы с гусеницами, поражающими капусту и свеклу, а также для уничтожения домашней моли.

Что произойдет с клеткой, если ее заразить не одним, а двумя вирусами? Если вы решили, что в этом случае болезнь клетки обострится, и гибель ее ускорится, то ошиблись. Оказывается, присутствие в клетке одного вируса часто надежно защищает ее от губительного действия другого. Это явление было названо учеными интерференцией вирусов. Связано оно с выработкой особого белка — интерферона, который в клетках приводит в действие защитный механизм, способный отличать вирусное от невирусного и вирусное избирательно подавлять. Интерферон подавляет размножение в клетках большинства вирусов (если не всех). Вырабатываемый в качестве лечебного препарата интерферон применяется сейчас для лечения и профилактики уже многих вирусных заболеваний.

Каких еще полезных дел можно ожидать в будущем от вирусов? Давайте перенесемся в область предположений.

Прежде всего, стоит напомнить о генной инженерии. Вирусы могут оказать ученым неоценимую пользу, захватывая нужные гены в одних клетках и перенося их в другие.

Наконец, существует еще одна возможность использования вирусов. Учеными открыт вирион, который способен избирательно разрушать некоторые опухоли мышей. Получены также вирусы, убивающие опухолевые клетки человека. Если удастся лишить эти вирусы болезнетворных свойств и сохранить при этом их свойство избирательно разрушать злокачественные опухоли, то в будущем, возможно, будет получено мощное средство для борьбы с этими тяжелыми заболеваниями. Поиски таких вирусов ведутся, и сейчас эта работа уже не кажется фантастической и безнадежной.

2.7.2. Риккетсии

Риккетсии – грамотрицательные, аэробные бактерии, неподвижные, спор и капсул не образуют; отличаются плеоморфизмом. Чаще всего они имеют палочковидную или кокковидную форму (размер клеток около 1 мкм); иногда могут встречаться нитевидные клетки длиной до 20-40 мкм. Для их окраски, как правило, используется метод Романовского-Гимзы или Здродовского.

Эти бактерии являются облигатными внутриклеточными паразитами, так как не способны синтезировать НАД. Риккетсии размножаются бинарным делением в цитоплазме или ядре клетки. Для их культивирования в лабораторных условиях используют куриные эмбрионы или культуры клеток млекопитающих.

В природе многие риккетсии обитают в организме насекомых; могут быть патогенны для млекопитающих и человека, вызывая риккетсиозы. Для большинства этих заболеваний характерно поражение кровеносных капилляров и кожных покровов, сопровождающееся появлением обильной сыпи, головные боли, лихорадочные состояния. Переносчиками риккетсий являются вши, блохи, клещи.

Наиболее известными риккетсиями, патогенными для человека, являются представители родов Rickettsia, Coxiella и Ehrlichia.

 род Rickettsia

R. prowazekii– возбудитель эпидемического (вшивого) сыпного тифа. Источник инфекции – больной человек; переносчик – головная и платяная вошь.

R. typhiвызывает эндемический (крысиный) сыпной тиф. Источник инфекции – крысы, мыши; переносчики – блохи, крысиные вши. Заражение может происходить трансмиссивным (при укусах насекомых), воздушно-капельным и алиментарным путем (при употреблении в пищу продуктов, инфицированных больными животными).

R. sibiricaвызывает североазиатский клещевой риккетсиоз. Источником инфекции являются мелкие грызуны и клещи; переносчики – иксодовые клещи. Инфекция распространена в Сибири, некоторых регионах Средней Азии и на Дальнем Востоке.

R.conorii– возбудитель марсельской (средиземноморской) лихорадки. Источник инфекции – собачий клещ и, возможно, собаки; переносчик – собачий клещ. Заражение человека происходит при укусе и втирании инфицированного насекомого в место укуса. Заболевание регистрируется преимущественно в прибрежных регионах Средиземного, Черного и Каспийского морей.

R.tsutsugamushi– возбудитель лихорадки цуцугамуши. Это заболевание распространено в странах Восточной и Юго-Восточной Азии, Индии, Приморском крае Российской Федерации. Рещзервуар возбудителя в природе – грызуны и клещи-краснотелки; переносчик – личинки краснотелковых клещей.

 род Coxiella

C. burnetii- возбудитель ку-лихорадки. Источник инфекции – грызуны, птицы, крупный рогатый скот; переносчики – различные виды клещей. Заражение может происходить аэрогенно, а также при укусах насекомых, через пищевые продукты (молоко) и предметы. Заболевание чаще всего протекает в форме пневмонии.

 род Ehrlichia

Представители этого рода имеют очень мелкие размеры, их можно рассмотреть только при электронной микроскопии. Эрлихии поражают гранулоциты, лимфоциты, макрофаги, что приводит к иммунодефицитным состояниям. Эрлихиозы проявляются лихорадкой, головной болью, болями в мышцах и суставах, кашлем, сыпью. Природным резервуаром возбудителя являются дикие животные; переносчики – клещи.

Аэробные и анаэробные бактерии могут быть идентифицированы путем выращивания их в пробирках тиогликолатную бульона :
1: облигатные аэробы нужен кислород , потому что они не могут сбраживать или дышат анаэробно. Они собираются в верхней части трубы , где концентрация кислорода является высокой.
2: облигатные анаэробы отравляются кислородом, таким образом , они собираются в нижней части трубки , где концентрация кислорода является самым низкой.
3: Факультативные анаэробы могут расти и без кислорода , потому что они могут усваивать энергию аэробно или анаэробно. Они собирают главным образом в верхней части , поскольку аэробное дыхание производит больше АТФ , чем любой ферментации или анаэробного дыхания.
4: микроаэрофильный организм нуждается в кислороде , потому что они не могут сбраживать или дышат анаэробно. Тем не менее, они отравляются высокими концентрациями кислорода. Они собираются в верхней части пробирки , но не на самом верху.

5: Aerotolerant организмы не нуждаются в кислороде , как они усваивают энергию анаэробно. В отличие от облигатных анаэробов однако, они не отравлены кислородом. Они могут быть найдены равномерно распределены по всей пробирке.

Степень аэробности среды

Интерполяция руководства к системам BD Gaspak, описывающая условия среды генерируемые пакетом

Для измерения потенциала среды М. Кларк предложил использовать величину pH20 — отрицательный логарифм парциального давления газообразного водорода. Диапазон характеризует все степени насыщения водного раствора водородом и кислородом. Аэробы растут при более высоком потенциале , факультативные анаэробы , а облигатные — при наиболее низком .

Получение энергии путём субстратного фосфорилирования. Брожение. Гниение

Схема гликолиза с образованием молочной кислоты

  • Также анаэробные организмы могут получать энергию путём катаболизма аминокислот и их соединений (пептидов, белков). Такие процессы именуют гниением, а микрофлору в энергетическом обмене которой преобладают процессы катаболизма аминокислот называют гнилостной.
  • Анаэробные микроорганизмы расщепляют гексозы (например, глюкозу) разными путями:
    • Гликолиз (Путь Эмдена-Мейергофа) после которого продукт подвергается брожению
    • окислительный пентозофосфатный путь (другие названия: Фосфогликонатный путь, иначе гексозомонофосфатный(ГКМ), иначе путь Варбурга — Диккенса — Хореккера)
    • Путь Энтнера — Дудорова (особенно значимый, когда субстратами служат глюконовая, маннановая, гексуроновые кислоты или их производные)

В качестве примера организма, сбраживающего сахара по пути Энтнера — Дудорова, можно привести облигатно анаэробную бактерию Zymomonas mobilis. Однако её изучение позволяет предполагать, что Z. mobilis — вторичный анаэроб, произошедший от цитохромсодержащих аэробов. Путь Энтнера — Дудорова обнаружен и у некоторых клостридиев, что ещё раз подчеркивает неоднородность эубактерий, объединенных в эту таксономическую группу..

При этом характерным только для анаэробов является гликолиз, который в зависимости от конечных продуктов реакции разделяют на несколько типов брожения:

  • молочнокислое брожение — род Lactobacillus,Streptococcus, Bifidobacterium, а также некоторые ткани многоклеточных животных и человека.
  • спиртовое брожение — сахаромицеты, кандида (организмы царства грибов)
  • муравьинокислое — семейство энтеробактерий
  • маслянокислое — некоторые виды клостридий
  • пропионовокислое — пропионобактерии(например, Propionibacterium acnes)
  • брожение с выделением молекулярного водорода — некоторые виды клостридий, ферментация Stickland
  • метановое брожение — например, Methanobacterium

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ. Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н2. Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением pH среды, в то время как расщепление белков и аминокислот — повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

Выделение чистой культуры анаэробов схематично

Культивирование анаэробных организмов в основном является задачей микробиологии.

Сложнее дело обстоит с культивированием анаэробных многоклеточных организмов, поскольку для их культивирования часто необходима специфическая микрофлора, а также определённые концентрации метаболитов. Применяется, например, при исследовании паразитов человеческого организма.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах — анаэростатах.

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах — добавление редуцирующих веществ (глюкозу, муравьинокислый натрий, казеин, сульфат натрия, тиосульфат, цистеин, тиогликолят натрия и др.), связывающих токсичные для анаэробов перикисные соединения.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона-Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид — аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика.

Среда Китта-Тароцци состоит из мясопептонного бульона, 0,5 % глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 — 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak — система химическим путём обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются — их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Фортнера

Метод Фортнера — посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую — анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) — рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Перетца

Метод Перетца — в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри. Метод наименее надежен из всех, но достаточно прост в применении.

Анаэробный энергетический обмен в тканях человека и животных

Основной источник:Анаэробное и аэробное энергообразование в тканях человека

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путём, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

3 вида анаэробного пути синтеза АТФ

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм — перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный — синтез (иначе ресинтез) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
  • Гликолитический — анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием молочной кислоты (иначе именуется «лактатным»).

Необходимо отметить, что прямым следствием гликолиза является критическое снижение рН тканей — ацидоз. Это ведет к снижению эффективного транспорта кислорода гемоглобином, и формирует положительную обратную связь.

Каждый механизм имеет своё время удержания максимальной мощности и оптимум энергообеспечения тканей. Наибольшая мощность и наименьшее время удержания:

См. также

  • Аэробы

Примечания

Ссылки

Для улучшения этой статьи желательно:

  • Исправить статью согласно стилистическим правилам Википедии.
  • Проставив сноски, внести более точные указания на источники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *